Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
1.
Nat Food ; 5(3): 230-240, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528241

RESUMO

Cropland fragmentation contributes to low productivity and high abandonment risk. Using spatial statistics on a detailed land use map, we show that 10% of Chinese croplands have no potential to be consolidated for large-scale farming (>10 ha) owing to spatial constraints. These fragmented croplands contribute only 8% of total crop production while using 15% of nitrogen fertilizers, leading to 12% of fertilizer loss in China. Optimizing the cropping structure of fragmented croplands to meet animal food demand in China can increase animal food supply by 19%, equivalent to increasing cropland proportionally. This crop-switching approach would lead to a 10% and 101% reduction in nitrogen and greenhouse gas emissions, respectively, resulting in a net benefit of US$ 7 billion yr-1. If these fragmented croplands were relocated to generate large-scale farming units, livestock, vegetable and fruit production would be increased by 8%, 3% and 14%, respectively, and reactive nitrogen and greenhouse gas emissions would be reduced by 16% and 5%, respectively, resulting in a net benefit of US$ 44 billion yr-1. Both solutions could be used to achieve synergies between food security, economic benefits and environmental protection through increased agricultural productivity, without expanding the overall cropland area.


Assuntos
Gases de Efeito Estufa , Animais , Agricultura , Produção Agrícola/métodos , Verduras , Nitrogênio/química
3.
Nature ; 626(8000): 792-798, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297125

RESUMO

Crop production is a large source of atmospheric ammonia (NH3), which poses risks to air quality, human health and ecosystems1-5. However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy4,5. Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr-1, lower than previous estimates that did not fully consider fertilizer management practices6-9. Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr-1) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.


Assuntos
Amônia , Produção Agrícola , Fertilizantes , Amônia/análise , Amônia/metabolismo , Produção Agrícola/métodos , Produção Agrícola/estatística & dados numéricos , Produção Agrícola/tendências , Conjuntos de Dados como Assunto , Ecossistema , Fertilizantes/efeitos adversos , Fertilizantes/análise , Fertilizantes/estatística & dados numéricos , Aprendizado de Máquina , Nitrogênio/análise , Nitrogênio/metabolismo , Oryza/metabolismo , Solo/química , Triticum/metabolismo , Zea mays/metabolismo , Mudança Climática/estatística & dados numéricos
4.
Plant Physiol Biochem ; 206: 108244, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071802

RESUMO

Nanotechnology offers many potential solutions for sustainable agroecosystem, including improvement in nutrient use efficiency, efficacy of pest management, and minimizing the adverse environmental effects of agricultural production. Herein, we first highlighted the integrated application of nanotechnology and precision agriculture for sustainable productivity. Application of nanoparticle mediated material and advanced biosensors in precision agriculture is only possible by nanochips or nanosensors. Nanosensors offers the measurement of various stresses, soil quality parameters and detection of heavy metals along with the enhanced data collection, enabling precise decision-making and resource management in agricultural systems. Nanoencapsulation of conventional chemical fertilizers (known as nanofertilizers), and pesticides (known as nanopesticides) helps in sustained and slow release of chemicals to soils and results in precise dosage to plants. Further, nano-based disease detection kits are popular tools for early and speedy detection of viral diseases. Many other innovative approaches including biosynthesized nanoparticles have been evaluated and proposed at various scales, but in fact there are some barriers for practical application of nanotechnology in soil-plant system, including safety and regulatory concerns, efficient delivery at field levels, and consumer acceptance. Finally, we outlined the policy options and actions required for sustainable agricultural productivity, and proposed various research pathways that may help to overcome the upcoming challenges regarding practical implications of nanotechnology.


Assuntos
Agricultura , Praguicidas , Agricultura/métodos , Nanotecnologia/métodos , Produção Agrícola/métodos , Fertilizantes/análise , Plantas , Solo
5.
J Sci Food Agric ; 104(2): 1074-1084, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37804150

RESUMO

BACKGROUND: The present work estimates the area and corresponding wheat crop production in the study area, which comprises the Etah region of Uttar Pradesh, India. For this purpose, multispectral images of multiple sensors, namely Sentinel-2, Landsat-8 and Landsat-9 during the preharvest period, i.e. March for the years 2021 and 2022, were used. A multispectral information fusion approach was proposed, involving image classification as well as vegetation index-based information extraction. For imposing information fusion, appropriate image bands were identified with the help of separability analysis followed by land cover classification for wheat crop class extraction. Support vector machine (SVM), artificial neural network (ANN) and maximum likelihood (ML) were used for classification, whereas normalized difference vegetation index (NDVI) and fractional vegetation cover (FVC) were used for index-based crop area extraction. RESULTS: A maximum accuracy of 98.34% was achieved for Sentinel-2 data using ANN, whereas a minimum accuracy of 80.21% was achieved for Landsat-9 using the ML classifier. The estimated area for Sentinel-2 data for the year 2021 was 260 540 ha using ANN and 203 240 ha using ML, which is close to the reference data, i.e. 238 600 ha. SVM also showed good performance and calculated least error in estimated crop area for the year 2022 on Sentinel-2 data. It calculated 8 408 490 tons of wheat for the same year. CONCLUSION: The proposed method utilizes a single image per year for extraction of information supported by the ground truth data, which makes it a novel approach to information extraction for crop production monitoring. © 2023 Society of Chemical Industry.


Assuntos
Produção Agrícola , Triticum , Produção Agrícola/métodos , Índia
7.
Int J Biol Macromol ; 253(Pt 7): 127413, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858657

RESUMO

In this work, we looked at using nickel oxide (NiO) nanocomposites with chitosan encapsulation as a nano-primer to improve wheat crop output. A straightforward green precipitation procedure was used to create the nanocomposites, and they were then characterized using several methods. According to the findings, the chitosan-encapsulated NiO nanocomposites possessed a large surface area and were resilient to changes in pH. Following this, wheat seeds were primed with the nanocomposites, and under greenhouse circumstances, the impact on crop growth was assessed. The findings demonstrated that, in comparison to the control group, nanocomposites priming considerably enhanced wheat growth and germination rate up to 99 %. In comparison to untreated plants, the wheat plants treated with the nanocomposites primer had greater plant height i.e. shoot length (11.4 cm) and root length (10.3 cm), leaf area, and biomass accumulation. Further research into the mechanism underlying the priming effect of nanocomposites on wheat growth revealed that the nanocomposites enhanced nutrient absorption, photosynthesis, and stress tolerance in wheat plants. In conclusion, our research shows that chitosan-encapsulated NiO nanocomposites have the potential to improve wheat crop productivity in an environmentally benign and long-term manner, offering a viable strategy for sustainable farming.


Assuntos
Quitosana , Nanocompostos , Triticum , Produção Agrícola/métodos , Sementes
8.
J Environ Manage ; 347: 119033, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37757691

RESUMO

Milk vetch (Astragalus sinicus L.) is leguminous green manure (GM) which produces organic nitrogen (N) for subsequent crops and is widely planted and utilized to simultaneously reduce the use of synthetic N fertilizer and its environmental costs in rice systems. Determination of an optimal N application rate specific to the GM-rice system is challenging because of the large temporal and spatial variations in soil, climate, and field management conditions. To solve this problem, we developed a framework to explore the site-specific N application rate for the low-N footprint rice production system in southern China based on multi-site field experiments, farmer field survey, and process-based model (WHCNS_Rice, soil water heat carbon nitrogen simulator for rice). The results showed that a process-based model can explain >83.3% (p < 0.01) of the variation in rice yield, aboveground biomass, crop N uptake, and soil mineral N. Based on the scenario analysis of the tested WHCNS_Rice model, the simple regression equation was developed to implement site-specific N application rates that considered variations in GM biomass, soil, and climatic conditions. Simulation evaluation on nine provinces in southern China showed that the site-specific N application rate reduced regional synthetic N fertilizer input by 29.6 ± 17.8% and 65.3 ± 23.0% for single and early rice, respectively; decreased their total N footprints (NFs) by 23.4% and 49.3%, respectively; and without reduction in rice yield, compared with traditional farming N practices. The reduction in total NF was attributed to the reduced emissions from ammonia volatilization by 35.2%, N leaching by 28.4%, and N runoff by 32.7%. In this study, we suggested a low NF rice production system that can be obtained by combining GM with site-specific N application rate in southern China.


Assuntos
Oryza , Esterco/análise , Fertilizantes/análise , Produção Agrícola/métodos , Agricultura/métodos , Solo , China , Nitrogênio/análise
10.
Nature ; 619(7971): 782-787, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438520

RESUMO

Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence1-7. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit Schistosoma parasites to more than 200 million people globally8-10. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal Schistosoma infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive-with important public health co-benefits-to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty-disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win-win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions11 to the many and formidable, co-dependent global grand challenges of the twenty-first century.


Assuntos
Agricultura , Ecossistema , Saúde da População Rural , Esquistossomose , Caramujos , Animais , Criança , Humanos , Esquistossomose/epidemiologia , Esquistossomose/prevenção & controle , Esquistossomose/transmissão , Caramujos/parasitologia , África Ocidental , Fertilizantes , Espécies Introduzidas , Intestinos/parasitologia , Água Doce , Plantas/metabolismo , Biodiversidade , Ração Animal , Qualidade da Água , Produção Agrícola/métodos , Saúde Pública , Pobreza/prevenção & controle , Organismos Aquáticos/metabolismo , Tecnologia de Sensoriamento Remoto
11.
Phytochemistry ; 213: 113766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343736

RESUMO

The increased activity of PARP enzymes is associated with a deficiency of NAD+, as well as with a loss of NADPH and ATP, and consequent deterioration of the redox state in fruits. In this study, we checked whether treatment with nicotinamide (NAM) would affect PARP-1 expression and NAD+ metabolism in strawberry fruit during storage. For this purpose, strawberry fruits were treated with 10 mM NAM and co-treated with NAM and UV-C, and then stored for 5 days at 4 °C. Research showed that nicotinamide contributes to reducing oxidative stress level by reducing PARP-1 mRNA gene expression and the protein level resulting in higher NAD+ availability, as well as improving energy metabolism and NADPH levels in fruits, regardless of whether they are exposed to UV-C. The above effects cause fruits treated with nicotinamide to be characterised by higher anti-radical activity, and a lower level of reactive oxygen species in the tissue.


Assuntos
Armazenamento de Alimentos , Fragaria , Frutas , Niacinamida , Catalase , Produção Agrícola/métodos , Complexo II de Transporte de Elétrons , Armazenamento de Alimentos/métodos , Fragaria/efeitos dos fármacos , Fragaria/metabolismo , Fragaria/efeitos da radiação , Frutas/efeitos dos fármacos , Frutas/metabolismo , Frutas/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , NAD/metabolismo , NADP/metabolismo , Niacinamida/farmacologia , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro , Superóxido Dismutase , Raios Ultravioleta
12.
PLoS One ; 18(4): e0283499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079542

RESUMO

Crop yields in sub-Saharan Africa need to increase to keep pace with food demands from the burgeoning population. Smallholder farmers play an important role in national food self-sufficiency, yet many live in poverty. Investing in inputs to increase yields is therefore often not viable for them. To investigate how to unlock this paradox, whole-farm experiments can reveal which incentives could increase farm production while also increasing household income. In this study we investigated the impact of providing farmers with a US$ 100 input voucher each season, for five seasons in a row, on maize yields and overall farm-level production in two contrasting locations in terms of population density, Vihiga and Busia, in western Kenya. We compared the value of farmers' produce with the poverty line and the living income threshold. Crop yields were mainly limited by cash constraints and not by technological constraints as maize yield immediately increased from 16% to 40-50% of the water-limited yield with the provision of the voucher. In Vihiga, at best, one-third of the participating households reached the poverty line. In Busia half of the households reached the poverty line and one-third obtained a living income. This difference between locations was caused by larger farm areas in Busia. Although one third of the households increased the area farmed, mostly by renting land, this was not enough for them to obtain a living income. Our results provide empirical evidence of how a current smallholder farming system could improve its productivity and value of produce upon the introduction of an input voucher. We conclude that increasing yields of the currently most common crops cannot provide a living income for all households and additional institutional changes, such as alternative employment, are required to provide smallholder farmers a way out of poverty.


Assuntos
Produção Agrícola , Produtos Agrícolas , Fazendas , Organização do Financiamento , Renda , Pobreza , Agricultura/economia , Agricultura/métodos , Produtos Agrícolas/economia , Produtos Agrícolas/provisão & distribuição , Fazendas/economia , Quênia , Produção Agrícola/economia , Produção Agrícola/métodos , Motivação , Pobreza/economia , Organização do Financiamento/economia , Apoio Financeiro
13.
BMC Plant Biol ; 23(1): 187, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37032368

RESUMO

BACKGROUND: The allelopathic effect of Moringa (Moringa oleifera Lam.) leaves applied as organic manure in tiger nut (Cyperus esculentus L.) production on associated weeds was investigated in the guinea savanna of South West Nigeria, during the 2014 (September - November) and 2015 (June - August) wet seasons. METHODS: Five Moringa leaves rates (0, 2.5, 5.0, 7.5 and 10 t/ha) and three tuber sizes (0.28 g, 0.49 g and 0.88 g dry weight) were laid out in the main plot and sub-plot, respectively in a split-plot arrangement fitted into randomized complete block design and replicated three times. RESULTS: Parameters measured, which include, weed cover score (WCS), weed density (WD) and weed dry matter production (WDMP) were significantly (p<0.05) influenced in both years by Moringa leaf. In 2015, WCS, WD and WDMP significantly (p<0.05) reduced by 25-73%, 35-78% and 26-70% on Moringa leaves-treated plots respectively. There were significant (p<0.05) interactions between quantity of Moringa leaves incorporated and tuber size. The bigger the tuber and the higher the quantity of Moringa leaves incorporated the lower the WCS, WD and WDMP. CONCLUSIONS: Consequently, application of 10 t.ha- 1 Moringa leaves and planting of large or medium-sized tubers were recommended for optimum weed suppression in tiger nut production in South West Nigeria.


Assuntos
Produção Agrícola , Cyperus , Fertilizantes , Moringa oleifera , Folhas de Planta , Controle de Plantas Daninhas , Pradaria , Solo , Nigéria , Cyperus/crescimento & desenvolvimento , Estações do Ano , Distribuição Aleatória , Controle de Plantas Daninhas/métodos , Produção Agrícola/métodos
14.
Nature ; 616(7956): 300-305, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36927804

RESUMO

Achieving food-system sustainability is a multidimensional challenge. In China, a doubling of crop production since 1990 has compromised other dimensions of sustainability1,2. Although the country is promoting various interventions to enhance production efficiency and reduce environmental impacts3, there is little understanding of whether crop switching can achieve more sustainable cropping systems and whether coordinated action is needed to avoid tradeoffs. Here we combine high-resolution data on crop-specific yields, harvested areas, environmental footprints and farmer incomes to first quantify the current state of crop-production sustainability. Under varying levels of inter-ministerial and central coordination, we perform spatial optimizations that redistribute crops to meet a suite of agricultural sustainable development targets. With a siloed approach-in which each government ministry seeks to improve a single sustainability outcome in isolation-crop switching could realize large individual benefits but produce tradeoffs for other dimensions and between regions. In cases of central coordination-in which tradeoffs are prevented-we find marked co-benefits for environmental-impact reductions (blue water (-4.5% to -18.5%), green water (-4.4% to -9.5%), greenhouse gases (GHGs) (-1.7% to -7.7%), fertilizers (-5.2% to -10.9%), pesticides (-4.3% to -10.8%)) and increased farmer incomes (+2.9% to +7.5%). These outcomes of centrally coordinated crop switching can contribute substantially (23-40% across dimensions) towards China's 2030 agricultural sustainable development targets and potentially produce global resource savings. This integrated approach can inform feasible targeted agricultural interventions that achieve sustainability co-benefits across several dimensions.


Assuntos
Produção Agrícola , Meio Ambiente , Fazendeiros , Renda , Desenvolvimento Sustentável , China , Produção Agrícola/economia , Produção Agrícola/métodos , Fertilizantes/análise , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/tendências , Praguicidas , Gases de Efeito Estufa
15.
J Environ Manage ; 336: 117612, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967694

RESUMO

Safe and effective circulation of nutrient-rich meat and bone meal (MBM) could become a carbon-based alternative to limited chemical fertilizers (CFs). Therefore, MBM biochars (MBMCs) were produced at 500, 800, and 1000 °C to evaluate their effects on plant growth, nutrient uptake, and soil characteristics. The results revealed that MBMC produced at 500 °C (MBMC500) contained the maximum amount of C, N, and phytoavailable P. All additional MBMC doses with recommended CF increased sorghum shoot yield (6.7-16%) and significantly improved P uptake. Additional experiments were conducted with decreasing doses of CF (100-0%) with or without MBMC500 (7 t/ha) to quantify its actual fertilizing value. MBMC500 showed the capability to reduce CF requirement by 20% without compromising the optimum yield (by 100% CF) while increasing pH, CEC, total-N, available-P, Mg, and microbial population of post-harvest soil. Although a δ15N analysis confirmed MBMC500 as a source of plant N, a reduction in N uptake by MBMC500 + 80% CF treatment compared to 100% CF might have limited further sorghum growth. Thus, future studies should concentrate on producing MBMC with better N utilization capability and achieving maximum CF reduction without negative environmental impacts.


Assuntos
Fertilizantes , Solo , Fertilizantes/análise , Carvão Vegetal , Produção Agrícola/métodos , Carne/análise , Nitrogênio/análise , Agricultura/métodos
16.
Huan Jing Ke Xue ; 44(2): 1021-1028, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775625

RESUMO

For the sake of investigating the effects of residual antibiotics in soil on plant growth, sulfamethazine, which is commonly detected in soil, was selected in this project. In general, the growth index of rice at the seedling and mature stages, physiological/biochemical characteristics of roots and leaves, antibiotic residues, enrichment factors, and transport coefficients in various rice organs were respectively tested and analyzed to evaluate the ecological effects of sulfamethazine residues on rice. The results revealed that the inhibitory effect of sulfamethazine on plant height and biomass was maintained during the whole growth cycle. Moreover, the effect at the seedling stage was greater than that at the growth maturity stage, and the root part was more easily influenced than the seedling section. The root activity, nitrate reductase activity, and leaf chlorophyll content at the seedling stage were hindered by the increase in antibiotic content. By contrast, the antioxidant enzyme change showed a different tendency, in which the superoxide was activated, and the catalase and peroxidase were firstly activated and then inhibited. The sulfamethazine accumulation in various rice organs was in the order of root>leaf>sti>grain. The results of antibiotic risk assessment of rice grains exhibited that EDI/ADI was less than 0.1, indicating no health risk. The effect of sulfamethazine on enrichment factors and transport coefficients at the growth maturity stage was more obvious than that at the seedling stage. Considering the adverse effects of sulfamethazine on rice, we need to take the ecological effects of sulfamethazine on plants into consideration when applying livestock manure as organic fertilizer or using aquaculture water for irrigation, to ensure crop production safety.


Assuntos
Oryza , Poluentes do Solo , Sulfametazina/química , Solo/química , Antibacterianos/química , Produção Agrícola/métodos , Plantas , Plântula , Poluentes do Solo/análise
17.
Nature ; 613(7942): 77-84, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600068

RESUMO

Cropland is a main source of global nitrogen pollution1,2. Mitigating nitrogen pollution from global croplands is a grand challenge because of the nature of non-point-source pollution from millions of farms and the constraints to implementing pollution-reduction measures, such as lack of financial resources and limited nitrogen-management knowledge of farmers3. Here we synthesize 1,521 field observations worldwide and identify 11 key measures that can reduce nitrogen losses from croplands to air and water by 30-70%, while increasing crop yield and nitrogen use efficiency (NUE) by 10-30% and 10-80%, respectively. Overall, adoption of this package of measures on global croplands would allow the production of 17 ± 3 Tg (1012 g) more crop nitrogen (20% increase) with 22 ± 4 Tg less nitrogen fertilizer used (21% reduction) and 26 ± 5 Tg less nitrogen pollution (32% reduction) to the environment for the considered base year of 2015. These changes could gain a global societal benefit of 476 ± 123 billion US dollars (USD) for food supply, human health, ecosystems and climate, with net mitigation costs of only 19 ± 5 billion USD, of which 15 ± 4 billion USD fertilizer saving offsets 44% of the gross mitigation cost. To mitigate nitrogen pollution from croplands in the future, innovative policies such as a nitrogen credit system (NCS) could be implemented to select, incentivize and, where necessary, subsidize the adoption of these measures.


Assuntos
Produção Agrícola , Produtos Agrícolas , Poluição Ambiental , Nitrogênio , Solo , Humanos , Análise Custo-Benefício , Ecossistema , Fertilizantes/análise , Nitrogênio/análise , Solo/química , Poluição Ambiental/economia , Poluição Ambiental/prevenção & controle , Produção Agrícola/economia , Produção Agrícola/métodos , Produção Agrícola/tendências
18.
Environ Sci Pollut Res Int ; 30(9): 22668-22685, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36289129

RESUMO

With the improvement of industrialization, numerous rural laborers migrate to urban areas in search of off-farm jobs. Farmers change agricultural production decisions to adapt to the change of labor force, which will inevitably affect the crop planting structure. However, few studies have explored the sustainability of crop planting structure. Based on the calculation of the multiple cropping index (MCI), grain crops planting rate (GCR), economic crops planting rate (ECR), and ecological sustainability index (ESI) of crop planting structure, this study analyzes the impact of labor transfer rate (LTR) and labor cost (LC) on the sustainability of crop planting structure using a geographically and temporally weighted regression (GTWR) model. The results show that the scale of rural labor transfer and labor cost in China remains on the rise, but the growth rate has slowed down. The total carbon absorption of crops in China shows a U-shape trend, and the rice and maize have the largest carbon absorption. The impact of LTR on MCI is mainly positive, especially in the North China Plain in the early stage and some provinces in the Southwest China in the later stage. The impact of LTR on ECR and ESI is negative in most provinces. And the negative influence of LC on MCI is increasing, showing the spatial distribution characteristics of large influence in the southeast and small influence in the northwest. The impact of LC on ESI shows a negative effect in most provinces in the early stage, and the negative effect is more concentrated in some provinces in the southwest in the later stage.


Assuntos
Agricultura , População Rural , Humanos , China , Fazendas , Produtos Agrícolas , Carbono , Produção Agrícola/métodos
19.
J Environ Manage ; 326(Pt A): 116754, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36375439

RESUMO

The overuse of phosphate fertilizer causes waste of resources and is detrimental to the sustainability of agriculture and aquatic systems. Effective management of phosphorus (P) in agricultural systems is important. Lack of understanding on the temporal and spatial variations of P utilization in farmland systems would constrain the development of more precise and effective policies as well as management practices. Here, we used two indicators, P use efficiency (PUE) and P surplus (Psur), to evaluate changes in P utilization in crop production on both national and regional scale in China during 2005-2018. Great heterogeneity of PUE and Psur were found across different regions, with Northeast of China showing the highest PUE (0.67) and lowest Psur (11.0 kg/ha). For temporal trends, our study showed that China crossed the turning point of the environmental Kuznets curve in 2007, which indicates that China has reached a new development stage of P use that is resource-saving and environmentally friendly. Along with the processes of industrialization and urbanization in China, the development of agricultural mechanization has further resulted in an increase of PUE and decrease of Psur. Although great efforts were made, China still has a relative low PUE and high Psur compared to developed countries. Our results suggest a regionalized perspective for developing policies for the sustainable use of P resources.


Assuntos
Produção Agrícola , Fósforo , Fósforo/análise , Produção Agrícola/métodos , Fertilizantes , Agricultura/métodos , China
20.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499532

RESUMO

To overcome various factors that limit crop production and to meet the growing demand for food by the increasing world population. Seed priming technology has been proposed, and it is considered to be a promising strategy for agricultural sciences and food technology. This technology helps to curtail the germination time, increase the seed vigor, improve the seedling establishment, and enhance the stress tolerance, all of which are conducive to improving the crop yield. Meanwhile, it can be used to reduce seed infection for better physiological or phytosanitary quality. Compared to conventional methods, such as the use of water or chemical-based agents, X-rays, gamma rays, electron beams, proton beams, and heavy ion beams have emerged as promising physics strategies for seed priming as they are time-saving, more effective, environmentally friendly, and there is a greater certainty for yield improvement. Ionizing radiation (IR) has certain biological advantages over other seed priming methods since it generates charged ions while penetrating through the target organisms, and it has enough energy to cause biological effects. However, before the wide utilization of ionizing priming methods in agriculture, extensive research is needed to explore their effects on seed priming and to focus on the underlying mechanism of them. Overall, this review aims to highlight the current understanding of ionizing priming methods and their applicability for promoting agroecological resilience and meeting the challenges of food crises nowadays.


Assuntos
Germinação , Sementes , Sementes/fisiologia , Plântula/fisiologia , Produção Agrícola/métodos , Radiação Ionizante , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...